Approximation by Müntz-Polynomials Away from the Origin

Joseph Bak
Department of Mathematics, City College, New York, New York 10031
Communicated by Oved Shisha

Received August 14, 1979

Suppose $0 \leqslant a<b ; 0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}$. Let $\Lambda=\left\{1, x^{\lambda_{1}}, \ldots, x^{\lambda_{n}}\right\}$,

$$
\begin{aligned}
S & =\text { the Lipschitz class } \operatorname{Lip}_{1} 1[a, b] \\
& =\{f \in C[a, b]:|f(x)-f(y)| \leqslant|x-y| \text { for } x, y \in[a, b]\} .
\end{aligned}
$$

The approximation index $I_{\Lambda}[a, b]$ is defined by

$$
I_{\Lambda}[a, b]=\sup _{f \in S} \inf _{P \in[\Lambda]}\|f-P\|
$$

where $\|\cdot\|$ denotes the sup-norm on $[a, b]$. The importance of $I_{\Lambda}[a, b]$ as a measure of the closeness of $[\Lambda]$ to arbitrary functions in $C[a, b]$ is discussed, e.g., in [1, p. 440].
$I_{\Lambda}[0,1]$ has been determined (to within positive constant factors independent of n) for all sequences $0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}$ and takes the special forms
(A) If $\lambda_{j+1}-\lambda_{j} \leqslant 2$ for $0 \leqslant j \leqslant n-1$, then

$$
I_{\Lambda}[0,1] \doteq\left(\sum_{j=1}^{n} \lambda_{j}\right)^{-1 / 2} .
$$

(B) If $\lambda_{j+1}-\lambda_{j} \geqslant 2$ for $0 \leqslant j \leqslant \eta-1$, then

$$
I_{\Lambda}[0,1] \doteq \exp \left(-2 \sum_{j=1}^{n} \frac{1}{\lambda_{j}}\right),
$$

where \doteq means "equal up to a constant factor." See [9]. The results in all cases reflect the Müntz condition that the linear span of the infinite sequence $\left\{x^{\lambda_{j}}\right\}_{j=0}^{\infty}$ is dense in $C[0,1]$ iff $\sum_{j=1}^{\infty}\left(1 / \lambda_{j}\right)$ diverges.

Regarding the density of the linear span of $\left\{x^{\lambda_{j}}\right\}_{j=0}^{\infty}$ in $C[a, b], a>0$, it
was proven by Clarkson and Erdös [4, p. 9] for subsequences of the positive integers and by Luxemburg and Korevaar [8, p. 30] for arbitrary positive sequences $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ that an identical Müntz condition holds. That is, $\left[\left\{x^{\lambda_{j}}\right\}_{j=0}^{\infty}\right]$ is dense in $C[a, b]$ iff $\sum_{j=1}^{\infty}\left(1 / \lambda_{j}\right)$ diverges.

Moreover, von Golitschek [6] showed that if, for some $\beta>0, \lambda_{j} \leqslant \beta j$, for all $j, I_{A}[a, 1] \leqslant K_{a, \beta} / n$. In Theorem 1, we refine this result, obtaining an upper bound for the constant $K_{a, \beta}$ with several interesting ramifications.

Theorem 1. If $\lambda_{j} \leqslant \beta j, \beta>2$, for all j

$$
I_{A}[a, 1] \leqslant \frac{90 \gamma}{n}, \quad \text { where } \quad \gamma=\left(\frac{1}{a}\right)^{\beta / 2-1} \operatorname{Max}\left\{1, \frac{1}{\log (\beta-1)}\right\} \text {. }
$$

Proof. Let $d(f ; \Lambda)$ denote the uniform distance of f to $[\Lambda]$. Then

$$
\begin{equation*}
d\left(x^{k} ; \Lambda\right) \leqslant \frac{1}{a^{N}} \prod_{j=0}^{n}\left|\frac{\lambda_{j}-k}{\lambda_{j}+k+2 N}\right| . \tag{1}
\end{equation*}
$$

See [6, p. 22]. (Another proof of (1), indicating the connection with analyticfunction theory, can be given as follows: Note that $d\left(x^{k} ; \Lambda\right)=$ $\sup \int_{a}^{1} x^{k} d u(x)$, where the sup is taken over all measures $d u$ of mass 1 , orthogonal to Λ. For any such $d u$, let $F(z)=\int_{a}^{1} x^{z} d u(x)$. Then F is entire and inequality (1) follows by applying the usual Blaschke estimates to $F(z)$ in the half-plane $\operatorname{Re} z \geqslant-N$.)

Now assume $\lambda_{j} \leqslant \beta j, \beta>2$, and set $N=(\beta / 2-1) k$. Suppose moreover that q is such that $\lambda_{q} \leqslant k<\lambda_{q+1}$. Then we can factor

$$
\prod_{j=0}^{n}\left|\frac{\lambda_{j}-k}{\lambda_{j}+k+2 N}\right|
$$

into

$$
P_{1} P_{2}=\prod_{j=1}^{q} \frac{k-\lambda_{j}}{k+\lambda_{j}+2 N} \prod_{j=q+1}^{n} \frac{\lambda_{j}-k}{\lambda_{j}+k+2 N} .
$$

P_{1} is easily seen to be bounded by $(1 /(\beta-1))^{q}$. To estimate P_{2}, note that

$$
\frac{\lambda_{j}-k}{\lambda_{j}+k+2 N}=\frac{\lambda_{j}+N-(N+k)}{\lambda_{j}+N+(N+k)}
$$

and using the fact that $(1-u) /(1+u) \leqslant e^{-2 u}$

$$
P_{2} \leqslant \exp \left[-2(N+k) \sum_{j=q+1}^{n} \frac{1}{\lambda_{j}+N}\right] \leqslant \exp \left[-\beta k \sum_{j=q+1} \frac{1}{\lambda_{j}+N}\right] .
$$

Finally note

$$
\begin{aligned}
\sum_{j=q+1}^{n} \frac{1}{\lambda_{j}+N} & \geqslant \sum_{j=q+1}^{n} \frac{1}{\beta j+N} \geqslant \int_{q+1}^{n} \frac{d x}{\beta x+N} \\
& =\frac{1}{\beta} \log \left(\frac{\beta n+N}{\beta q+\beta+N}\right) \geqslant \frac{1}{\beta} \log \left(\frac{n}{q+1+(1 / 2) k}\right)
\end{aligned}
$$

so that

$$
P_{2} \leqslant\left(\frac{q+1+(1 / 2) k}{n}\right)^{k}
$$

We now consider two cases.
Case 1. If $q+1 \leqslant k, \quad P_{1} P_{2} \leqslant\left(1 /(\beta-1)^{q}\right)(3 k / 2 n)^{k} \leqslant(3 k / 2 n)^{k} \quad$ since $\beta>2$.

Case 2. If $q+1>k, \quad P_{1} P_{2} \leqslant\left(1 /(\beta-1)^{q}\right)(5 q / 2 n)^{k} \quad$ which has its maximum for fixed k at $q=k / \log (\beta-1)$. Hence $P_{1} P_{2} \leqslant$ $(5 k / 2 n e \log (\beta-1))^{k}$.

In either case, we conclude from (1) and the above that
$d\left(x^{k} ; A\right) \leqslant\left(\frac{3 \gamma k}{2 n}\right)^{k}, \quad$ where $\quad \gamma=\left(\frac{1}{a}\right)^{\beta / 2-1} \operatorname{Max}\left\{1, \frac{1}{\log (\beta-1)}\right\}$.
To complete the proof, let $f \in S$. Note, as in $[5,6]$ that we can find an ordinary M th degree polynomial $P_{M}(x)=\sum_{k=0}^{M} c_{k} x^{k}$ such that

$$
\begin{equation*}
\left\|f-P_{M}\right\| \leqslant \frac{8}{M} ; \quad c_{0}=f(a) ; \quad\left|c_{k}\right| \leqslant \frac{2 M^{k-1}}{k!}, \quad k=1,2, \ldots ., M \tag{3}
\end{equation*}
$$

Now let $P_{\Lambda}(x)=\sum_{k=0}^{M} c_{k} Q_{k}(x)$, where $Q_{k} \in[\Lambda]$ is the best Λ-approximator to x^{k}. Then by (2) and (3), $\left\|P_{M}-P_{A}\right\| \leqslant \sum_{k=1}^{M}\left(2 M^{k-1} / k!\right)(3 \gamma k / 2 n)^{k}$ and using the fact that $k!>k^{k} / e^{k}$

$$
\begin{equation*}
\left\|P_{M}-P_{A}\right\| \leqslant \frac{2}{M} \sum_{k=0}^{M}\left(\frac{3 M e \gamma}{2 n}\right)^{k} \tag{4}
\end{equation*}
$$

Choosing $M=[n / 3 e \gamma]$ it follows from (3) and (4) that

$$
\left\|f-P_{\Lambda}\right\| \leqslant\left\|f-P_{M}\right\|+\left\|P_{M}-P_{A}\right\| \leqslant \frac{90 \gamma}{n}
$$

and the proof is complete.
Remarks. (1) If $\lambda_{j} \leqslant 2 j$ for all j we can choose $\beta=2-2 / \log a$ thus
obtaining a minimum value of $\gamma \leqslant e \log (1 / a)$ if $a<1 / e$. In particular, $I_{\Lambda}\left[1 / n^{2}, 1\right] \leqslant(A \log n) / n$. The latter inequality has implications for the degree of rational approximation on [0, 1]. See [3].
(2) Theorem 1 can also be used to show the existence of a finite sequence $\lambda_{1}(n), \quad \lambda_{2}(n), \ldots, \lambda_{n}(n)$ for which $I_{\Lambda}[0,1] \geqslant A>0$ (where A is independent of n) while $I_{\Lambda}[a, 1] \rightarrow 0$ as $n \rightarrow \infty$. For, setting $\lambda_{1}=\log n, \lambda_{2}=$ $2 \log n, \ldots, \lambda_{n}=n \log n$, it follows that

$$
I_{\Lambda}[0,1] \geqslant A_{1} \exp \left(\frac{-2}{\log n} \sum_{j=1}^{n} \frac{1}{j}\right) \geqslant A_{2}
$$

see [1], while (taking $\beta=\log n$)

$$
I_{\Lambda}[a, 1] \leqslant A\left(\frac{1}{a}\right)^{(1 / 2) \log n} / n=A / n^{1+\log \sqrt{a}}
$$

which approaches 0 as $n \rightarrow \infty$ as long as $a>1 / e^{2}$.
(3) The inclusion of the constant 1 in the sequence Λ simplified the proof of Theorem 1 but is actually unnecessary as long as we assume some upper bound for $c_{0}=f(a)$. For then, as we shall see below, the constant 1 can be reapproximated by a linear combination of $\left\{x^{\lambda_{j}}\right\}_{j=1}^{n}$. P. Erdös suggested moreover that it might be interesting to estimate the degree of approximation possible by Λ-polynomials on $[a, 1]$ to x^{k} for any fixed $k \geqslant 0$. On $[0,1]$ the distance $d_{[0,1]}(x ; \Lambda)$ in many cases yields the lower bound for $I_{\Lambda}[0,1]$. See $[1, \mathrm{p} .454]$ and $[2, \mathrm{p} .224]$. The situation on $[a, 1]$ is quite different. In fact, for any $a>0$ and $k \geqslant 0, d\left(x^{k} ; \Lambda\right)$ actually decreases exponentially with n :

Theorem 2. Assurie $\lambda_{j} \leqslant \beta j, j=1,2, \ldots, n$, for some $\beta>0$. Then

$$
d\left(x^{k} ; \Lambda\right) \leqslant C_{k} \sqrt{n}\left(1-a^{\beta / 2}\right)^{n} .
$$

Proof. As in the previous proof, we begin with the inequality

$$
d\left(x^{k} ; \Lambda\right) \leqslant\left(\frac{1}{a}\right)^{N} \prod_{j=1}^{n}\left|\frac{\lambda_{j}-k}{\lambda_{j}+k+2 N}\right|
$$

Note then that if $\lambda_{j} \geqslant k$,

$$
\left|\frac{\lambda_{j}-k}{\lambda_{j}+k+2 N}\right| \leqslant \frac{\lambda_{j}}{\lambda_{j}+2 N}
$$

while if $\lambda_{j}<k$,

$$
\left|\frac{\lambda_{j}-k}{\lambda_{j}+k+2 N}\right| \leqslant \frac{k}{k+2 N}
$$

In either case, however, since $x /(x+2 N)$ is an increasing function of $x>0$,

$$
\left|\frac{\lambda_{j}-k}{\lambda_{j}+k+2 N}\right| \leqslant \frac{\beta j}{\beta j+2 N}
$$

except for finitely many j and thus

$$
d\left(x^{k} ; \Lambda\right) \leqslant C_{k}\left(\frac{1}{a}\right)^{N} \prod_{j=1}^{n} \frac{\beta j}{\beta j+2 N}
$$

We set $N=\beta \alpha n / 2$ so that

$$
d\left(x^{k} ; \Lambda\right) \leqslant C_{k}\left(\frac{1}{a}\right)^{\beta \alpha n / 2} \prod_{j=1}^{n} \frac{j}{j+\alpha n} .
$$

Since

$$
\prod_{j=1}^{n} \frac{j}{j+\alpha n}=\frac{\Gamma(n+1) \Gamma(\alpha n+1)}{\Gamma(n+\alpha n+1)}
$$

we can apply Stirling's Formula to conclude (with perhaps a new constant C_{k})

$$
d\left(x^{k} ; \Lambda\right) \leqslant C_{k} \sqrt{n}\left[\left(\frac{t \alpha}{1+\alpha}\right)^{\alpha} \frac{1}{1+\alpha}\right]^{n}
$$

where $t=(1 / a)^{3 / 2}$. Thus choosing α so that $\alpha /(1+\alpha)=a^{B / 2}$, we obtain Theorem 2.

EXAMPLE 1. If $a=\frac{1}{2}, \lambda_{j} \leqslant 2 j$ then $d\left(x^{k} ; \Lambda\right) \leqslant C_{k} \sqrt{n} / 2^{n}$.

Example 2. If $k=0, \beta=1$, Theorem 2 assures that the constant 1 can be approximated on $[a, 1]$ by a polynomial $P_{\Lambda}(x)$ (with $P_{\Lambda}(0)=0$) to within $c \sqrt{n}(1-\sqrt{a})^{n}$. If we take the special case $\lambda_{j}=j, j=1,2, \ldots, n$ the exact distance can be determined by noting that

$$
\inf _{\left(b_{j}\right)}\left\|1-\sum_{j=1}^{n} b_{j} x^{j}\right\|=\left\|T_{n}\left(\frac{2 x}{1-a}+\frac{a+1}{a-1}\right) / T_{n}\left(\frac{a+1}{a-1}\right)\right\|
$$

where T_{n} represents the nth degree Tchebychev polynomial on $\lceil-1,1\rceil$, i.e., when $1-\sum_{j-1}^{n} b_{j} x^{j}$ is a normalized translate of $T_{n}(x)$. Thus in this case

$$
d(1 ; \Lambda)=1 / T_{n}\left(\frac{a+1}{a-1}\right) \geqslant\left[\frac{1-a}{2(1+a)}\right]^{n} \geqslant\left(\frac{1-\sqrt{a}}{2}\right)^{n}
$$

References

1. J. Bak and D. J. Newman, Müntz-Jackson theorems in L^{p} and C, Amer. J. Math. 94 (1972), 437-457.
2. J. Bak and D. J. Newman, Müntz-Jackson theorems in $L^{p}, p<2$, J. Approx. Theory 10 (1974), 218-226.
3. J. Baк, The degree of rational approximation in $C|0,1|$ by unseparated Müntz sets, in preparation.
4. J. A. Clarkson and P. Erdös, Approximation by polynomials, Duke Math. J. 10 (1943), 5-11.
5. M. v. Gourtschek, Erweiterung der Approximationssätze von Weierstrass im Sinne von Ch. Müntz, J. Approx. Theory 3 (1970), 72-86.
6. M. v. Golitschek, Lineare Approximation durch Komplexe Exponentialsummen, Math. Z. 146 (1976), 17-32.
7. D. Jackson, "The Theory of Approximation," A.M.S. Colloquium Pubs., vol. XI, Amer. Math. Soc., New York, 1930.
8. W. A. J. Luxemburg and J. Korevaar, Entire functions and Müntz-Szasz type approximation, Trans. Amer. Math. Soc. 157 (1971), 23-37.
9. D. J. Newman, A general Müntz-Jackson theorem, Amer. J. Math. 96 (1974), 340-345.
