Approximation by Müntz-Polynomials Away from the Origin

JOSEPH BAK

Department of Mathematics, City College, New York, New York 10031 Communicated by Oved Shisha Received August 14, 1979

Suppose $0 \leq a < b$; $0 = \lambda_0 < \lambda_1 < \cdots < \lambda_n$. Let $\Lambda = \{1, x^{\lambda_1}, \dots, x^{\lambda_n}\}$,

S = the Lipschitz class Lip₁ 1[a, b]

$$= \{ f \in C[a, b] : |f(x) - f(y)| \leq |x - y| \text{ for } x, y \in [a, b] \}.$$

The approximation index $I_{\Lambda}[a, b]$ is defined by

$$I_{\Lambda}[a,b] = \sup_{f \in S} \inf_{P \in [\Lambda]} ||f-P||,$$

where $\|\cdot\|$ denotes the sup-norm on [a, b]. The importance of $I_A[a, b]$ as a measure of the closeness of $[\Lambda]$ to arbitrary functions in C[a, b] is discussed, e.g., in [1, p. 440].

 $I_{\Lambda}[0, 1]$ has been determined (to within positive constant factors independent of *n*) for all sequences $0 = \lambda_0 < \lambda_1 < \cdots < \lambda_n$ and takes the special forms

(A) If
$$\lambda_{j+1} - \lambda_j \leq 2$$
 for $0 \leq j \leq n-1$, then
 $I_{\Lambda}[0,1] \doteq \left(\sum_{j=1}^n \lambda_j\right)^{-1/2}$.
(B) If $\lambda_{j+1} - \lambda_j \geq 2$ for $0 \leq j \leq n-1$, then
 $I_{\Lambda}[0,1] \doteq \exp\left(-2\sum_{j=1}^n \frac{1}{\lambda_j}\right)$,

where \doteq means "equal up to a constant factor." See [9]. The results in all cases reflect the Müntz condition that the linear span of the *infinite* sequence $\{x^{\lambda_j}\}_{j=0}^{\infty}$ is dense in C[0, 1] iff $\sum_{j=1}^{\infty} (1/\lambda_j)$ diverges.

Regarding the density of the linear span of $\{x^{\lambda_j}\}_{j=0}^{\infty}$ in C[a, b], a > 0, it

was proven by Clarkson and Erdös [4, p. 9] for subsequences of the positive integers and by Luxemburg and Korevaar [8, p. 30] for arbitrary positive sequences $\{\lambda_j\}_{j=0}^{\infty}$ that an identical Müntz condition holds. That is, $[\{x^{\lambda_j}\}_{j=0}^{\infty}]$ is dense in C[a, b] iff $\sum_{j=1}^{\infty} (1/\lambda_j)$ diverges.

Moreover, von Golitschek [6] showed that if, for some $\beta > 0$, $\lambda_j \leq \beta j$, for all j, $I_{\Lambda}[a, 1] \leq K_{a,\beta}/n$. In Theorem 1, we refine this result, obtaining an upper bound for the constant $K_{a,\beta}$ with several interesting ramifications.

THEOREM 1. If $\lambda_i \leq \beta j$, $\beta > 2$, for all j

$$I_{\Lambda}[a,1] \leqslant \frac{90\gamma}{n}, \quad \text{where} \quad \gamma = \left(\frac{1}{a}\right)^{\beta/2-1} \operatorname{Max}\left\{1, \frac{1}{\log(\beta-1)}\right\}.$$

Proof. Let $d(f; \Lambda)$ denote the uniform distance of f to $[\Lambda]$. Then

$$d(x^{k};\Lambda) \leqslant \frac{1}{a^{N}} \prod_{j=0}^{n} \left| \frac{\lambda_{j} - k}{\lambda_{j} + k + 2N} \right|.$$
(1)

See [6, p. 22]. (Another proof of (1), indicating the connection with analyticfunction theory, can be given as follows: Note that $d(x^k; \Lambda) =$ $\sup \int_a^1 x^k du(x)$, where the sup is taken over all measures du of mass 1, orthogonal to Λ . For any such du, let $F(z) = \int_a^1 x^z du(x)$. Then F is entire and inequality (1) follows by applying the usual Blaschke estimates to F(z)in the half-plane Re $z \ge -N$.)

Now assume $\lambda_j \leq \beta j$, $\beta > 2$, and set $N = (\beta/2 - 1)k$. Suppose moreover that q is such that $\lambda_q \leq k < \lambda_{q+1}$. Then we can factor

$$\prod_{j=0}^{n} \left| \frac{\lambda_j - k}{\lambda_j + k + 2N} \right|$$

into

$$P_1P_2 = \prod_{j=1}^{q} \frac{k - \lambda_j}{k + \lambda_j + 2N} \prod_{j=q+1}^{n} \frac{\lambda_j - k}{\lambda_j + k + 2N}$$

 P_1 is easily seen to be bounded by $(1/(\beta - 1))^q$. To estimate P_2 , note that

$$\frac{\lambda_j - k}{\lambda_j + k + 2N} = \frac{\lambda_j + N - (N + k)}{\lambda_j + N + (N + k)}$$

and using the fact that $(1-u)/(1+u) \leq e^{-2u}$

$$P_2 \leqslant \exp\left[-2(N+k)\sum_{j=q+1}^n \frac{1}{\lambda_j+N}\right] \leqslant \exp\left[-\beta k\sum_{j=q+1}^{n} \frac{1}{\lambda_j+N}\right].$$

Finally note

$$\sum_{j=q+1}^{n} \frac{1}{\lambda_j + N} \ge \sum_{j=q+1}^{n} \frac{1}{\beta j + N} \ge \int_{q+1}^{n} \frac{dx}{\beta x + N}$$
$$= \frac{1}{\beta} \log \left(\frac{\beta n + N}{\beta q + \beta + N}\right) \ge \frac{1}{\beta} \log \left(\frac{n}{q + 1 + (1/2)k}\right)$$

so that

$$P_2 \leqslant \left(\frac{q+1+(1/2)k}{n}\right)^k.$$

We now consider two cases.

Case 1. If $q+1 \leq k$, $P_1P_2 \leq (1/(\beta-1)^q)(3k/2n)^k \leq (3k/2n)^k$ since $\beta > 2$.

Case 2. If q+1 > k, $P_1P_2 \leq (1/(\beta-1)^q)(5q/2n)^k$ which has its maximum for fixed k at $q = k/\log(\beta-1)$. Hence $P_1P_2 \leq (5k/2ne\log(\beta-1))^k$.

In either case, we conclude from (1) and the above that

$$d(x^k; \Lambda) \leq \left(\frac{3\gamma k}{2n}\right)^k$$
, where $\gamma = \left(\frac{1}{a}\right)^{\beta/2-1} \operatorname{Max}\left\{1, \frac{1}{\log(\beta-1)}\right\}$. (2)

To complete the proof, let $f \in S$. Note, as in [5, 6] that we can find an ordinary *M*th degree polynomial $P_M(x) = \sum_{k=0}^M c_k x^k$ such that

$$||f - P_M|| \leq \frac{8}{M}; \quad c_0 = f(a); \quad |c_k| \leq \frac{2M^{k-1}}{k!}, \quad k = 1, 2, ..., M.$$
 (3)

Now let $P_{\Lambda}(x) = \sum_{k=0}^{M} c_k Q_k(x)$, where $Q_k \in [\Lambda]$ is the best Λ -approximator to x^k . Then by (2) and (3), $||P_M - P_\Lambda|| \leq \sum_{k=1}^{M} (2M^{k-1}/k!)(3\gamma k/2n)^k$ and using the fact that $k! > k^k/e^k$

$$\|P_M - P_A\| \leq \frac{2}{M} \sum_{k=0}^{M} \left(\frac{3Me\gamma}{2n}\right)^k.$$
(4)

Choosing M = [n/3ey] it follows from (3) and (4) that

$$\|f - P_{\Lambda}\| \leq \|f - P_{M}\| + \|P_{M} - P_{\Lambda}\| \leq \frac{90\gamma}{n}$$

and the proof is complete.

Remarks. (1) If $\lambda_j \leq 2j$ for all j we can choose $\beta = 2 - 2/\log a$ thus

obtaining a minimum value of $\gamma \leq e \log(1/a)$ if a < 1/e. In particular, $I_{\Lambda}[1/n^2, 1] \leq (A \log n)/n$. The latter inequality has implications for the degree of *rational* approximation on [0, 1]. See [3].

(2) Theorem 1 can also be used to show the existence of a finite sequence $\lambda_1(n)$, $\lambda_2(n),...,\lambda_n(n)$ for which $I_A[0,1] \ge A > 0$ (where A is independent of n) while $I_A[a,1] \to 0$ as $n \to \infty$. For, setting $\lambda_1 = \log n$, $\lambda_2 = 2 \log n,...,\lambda_n = n \log n$, it follows that

$$I_{\Lambda}[0,1] \geqslant A_1 \exp\left(\frac{-2}{\log n} \sum_{j=1}^n \frac{1}{j}\right) \geqslant A_2,$$

see [1], while (taking $\beta = \log n$)

$$I_{\Lambda}[a, 1] \leqslant A \left(\frac{1}{a}\right)^{(1/2)\log n} / n = A/n^{1+\log\sqrt{a}}$$

which approaches 0 as $n \to \infty$ as long as $a > 1/e^2$.

(3) The inclusion of the constant 1 in the sequence Λ simplified the proof of Theorem 1 but is actually unnecessary as long as we assume some upper bound for $c_0 = f(a)$. For then, as we shall see below, the constant 1 can be reapproximated by a linear combination of $\{x^{\lambda_j}\}_{j=1}^n$. P. Erdös suggested moreover that it might be interesting to estimate the degree of approximation possible by Λ -polynomials on [a, 1] to x^k for any fixed $k \ge 0$. On [0, 1] the distance $d_{[0,1]}(x; \Lambda)$ in many cases yields the lower bound for $I_{\Lambda}[0, 1]$. See [1, p. 454] and [2, p. 224]. The situation on [a, 1] is quite different. In fact, for any a > 0 and $k \ge 0$, $d(x^k; \Lambda)$ actually decreases exponentially with n:

THEOREM 2. Assume $\lambda_j \leq \beta j$, j = 1, 2, ..., n, for some $\beta > 0$. Then

$$d(x^k;\Lambda) \leqslant C_k \sqrt{n}(1-a^{\beta/2})^n.$$

Proof. As in the previous proof, we begin with the inequality

$$d(x^k; \Lambda) \leq \left(\frac{1}{a}\right)^N \prod_{j=1}^n \left| \frac{\lambda_j - k}{\lambda_j + k + 2N} \right|.$$

Note then that if $\lambda_i \ge k$,

$$\left|\frac{\lambda_j-k}{\lambda_j+k+2N}\right| \leq \frac{\lambda_j}{\lambda_j+2N}$$

while if $\lambda_i < k$,

$$\left|\frac{\lambda_j-k}{\lambda_j+k+2N}\right|\leqslant \frac{k}{k+2N}.$$

In either case, however, since x/(x + 2N) is an increasing function of x > 0,

$$\left|\frac{\lambda_j - k}{\lambda_j + k + 2N}\right| \leq \frac{\beta j}{\beta j + 2N}$$

except for finitely many j and thus

$$d(x^k; \Lambda) \leqslant C_k \left(\frac{1}{a}\right)^N \prod_{j=1}^n \frac{\beta j}{\beta j + 2N}$$

We set $N = \beta \alpha n/2$ so that

$$d(x^k;\Lambda) \leqslant C_k \left(\frac{1}{a}\right)^{\beta \alpha n/2} \prod_{j=1}^n \frac{j}{j+\alpha n}.$$

Since

$$\prod_{j=1}^{n} \frac{j}{j+an} = \frac{\Gamma(n+1)\,\Gamma(an+1)}{\Gamma(n+an+1)}\,,$$

we can apply Stirling's Formula to conclude (with perhaps a new constant C_k)

$$d(x^k; \Lambda) \leq C_k \sqrt{n} \left[\left(\frac{t\alpha}{1+\alpha} \right)^{\alpha} \frac{1}{1+\alpha} \right]^n,$$

where $t = (1/a)^{\beta/2}$. Thus choosing α so that $\alpha/(1+\alpha) = a^{\beta/2}$, we obtain Theorem 2.

EXAMPLE 1. If $a = \frac{1}{2}$, $\lambda_j \leq 2j$ then $d(x^k; \Lambda) \leq C_k \sqrt{n/2^n}$.

EXAMPLE 2. If k = 0, $\beta = 1$, Theorem 2 assures that the constant 1 can be approximated on [a, 1] by a polynomial $P_A(x)$ (with $P_A(0) = 0$) to within $c\sqrt{n}(1-\sqrt{a})^n$. If we take the special case $\lambda_j = j$, j = 1, 2, ..., n the exact distance can be determined by noting that

$$\inf_{\{b_j\}} \left\| 1 - \sum_{j=1}^n b_j x^j \right\| = \left\| T_n \left(\frac{2x}{1-a} + \frac{a+1}{a-1} \right) \right/ T_n \left(\frac{a+1}{a-1} \right) \right\|,$$

where T_n represents the *n*th degree Tchebychev polynomial on [-1, 1], i.e., when $1 - \sum_{i=1}^{n} b_i x^i$ is a normalized translate of $T_n(x)$. Thus in this case

$$d(1;\Lambda) = 1 \Big/ T_n\left(\frac{a+1}{a-1}\right) \ge \left[\frac{1-a}{2(1+a)}\right]^n \ge \left(\frac{1-\sqrt{a}}{2}\right)^n.$$

REFERENCES

- 1. J. BAK AND D. J. NEWMAN, Müntz-Jackson theorems in L^P and C, Amer. J. Math. 94 (1972), 437-457.
- 2. J. BAK AND D. J. NEWMAN, Müntz-Jackson theorems in L^{p} , p < 2, J. Approx. Theory 10 (1974), 218-226.
- 3. J. BAK, The degree of rational approximation in C[0, 1] by unseparated Müntz sets, in preparation.
- 4. J. A. CLARKSON AND P. ERDÖS, Approximation by polynomials, *Duke Math. J.* 10 (1943), 5-11.
- 5. M. v. GOLITSCHEK, Erweiterung der Approximationssätze von Weierstrass im Sinne von Ch. Müntz, J. Approx. Theory 3 (1970), 72-86.
- M. v. GOLITSCHEK, Lineare Approximation durch Komplexe Exponentialsummen, Math. Z. 146 (1976), 17-32.
- 7. D. JACKSON, "The Theory of Approximation," A.M.S. Colloquium Pubs., vol. XI, Amer. Math. Soc., New York, 1930.
- W. A. J. LUXEMBURG AND J. KOREVAAR, Entire functions and Müntz-Szasz type approximation, Trans. Amer. Math. Soc. 157 (1971), 23-37.
- 9. D. J. NEWMAN, A general Müntz-Jackson theorem, Amer. J. Math. 96 (1974), 340-345.