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Suppose 0 < a <b; 0=4, <A, <+~ <A,. Let A= {1, x*.., x*n},
S = the Lipschitz class Lip, 1]a, 5]
={f€Cla,b]:|f(x)—SWI<|x — y|forx, y € [a, b]}.
The approximation index I,[a, b] is defined by

Iyla, b]= sup Lnf 1S =P,

where || - || denotes the sup-norm on [a, b]. The importance of 1,[a, b] as a
measure of the closeness of [4] to arbitrary functions in Cla, b] is discussed,
e.g., in 1, p. 440].

1,[0,1] has been determined (to within positive constant factors
independent of n) for all sequences 0=14,< 41, <--- <A1, and takes the
special forms

(A) Ifi;,,—A,<2for 0K j<n—1, then

n ~1/2
1,[0,1]= ( z,.) ,
Jj=1

(B) Ifid;,,—4>2for 0 j<1—1, then
1,10, 1] =exp (—2 D -—l—),
=i

where = means “equal up to a constant factor.” See [9]. The results in all
cases reflect the Miintz condition that the linear span of the infinite sequence
{x}{2, is dense in C[0, 1] iff 352, (1/4,) diverges.
Regarding the density of the linear span of {x*}, in Cla, b], a >0, it
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was proven by Clarkson and Erdés [4, p. 9] for subsequences of the positive
integers and by Luxemburg and Korevaar [8, p. 30] for arbitrary positive
sequences {4;};2, that an identical Miintz condition holds. That is, [{x"} ]
is dense in Cl[a, b] iff 3", (1/4;) diverges.

Moreover, von Golitschek [6] showed that if, for some £ > 0, A; < Bj, for
all j, I,la,1]< K, g/n. In Theorem 1, we refine this result, obtaining an
upper bound for the constant K, , with several interesting ramifications.

THEOREM 1. If ;< Bj, B> 2, for all j

0 1\P2-!
1,[a, 1]<¥, where y= (7) Max

1
L, ————.
log(f—1) t
Progf. Let d(f; A) denote the uniform distance of f'to [4]. Then

d(et; 4) < n (1)

Ak
A+k+2Nl

See [6, p. 22]. (Another proof of (1), indicating the connection with analytic-
function theory, can be given as follows: Note that d(x*;A)=
sup [} x* du(x), where the sup is taken over all measures du of mass I,
orthogonal to A. For any such du, let F(z) = [} x* du(x). Then F is entire
and inequality (1) follows by applying the usual Blaschke estimates to F(z)
in the half-plane Re z > —N.)

Now assume A;<fj, B> 2, and set N = (/2 — 1)k. Suppose moreover
that g is such that 4, <k <4,,,. Then we can factor

n

Il

L—k
A +k+2N
into
@ k—A A=k
Piby= 1_[k+,l +2N 11 Ai+k+2N’

j=q+1

P, is easily seen to be bounded by (1/(f — 1))7. To estimate P,, note that

A=k A +N—(N+k)
A+k+2N 2+ N+ (N+k)

and using the fact that (1 —u)/(1 + u) < e **

| <oR e Y ¢ |

A

J

P, <exp [—Z(N +k) >

J=g+1
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Finally note

n n n dx
Y o> ¥
J'=7+1 J' j=q+ J+N q+lﬁx+N
_1 pn+ N 1o ( n )
=7 (ﬂq+ﬁ+N) A VERENVA
so that

P,< (q +1 :(I/Z)k)"'

We now consider two cases.

Case 1. If g+ 1<k, PP, <(1/(B— 1)7)(3k/2n)* < (3k/2n)* since
B>2

Case 2. If q+ 1>k, P.P,<(1/(B—1))(5¢q/2n)* which has its
maximum  for fixed k at g=k/log(f—1). Hence P,P,<

(5k/2ne log(f — 1))~
In either case, we conclude from (1) and the above that

3k N 1
d( k. A) (2})”) . where 7= (-a-) Max ;l’l—o—g(T—T) .

To complete the proof, let f € S. Note, as in [5,6] that we can find an
ordinary Mth degree polynomial P,,(x) =¥ , c,x* such that

)

k—1

8
“f_PM”<M§ C():f(a); 'ck[<_k!——a k=1525-~-9M' (3)
Now let P,(x) =Y %, ¢, Q,(x), where Q, € [A] is the best A-approximator
to x*. Then by (2) and (3), ||Py — P, < ¥, @M*~/k))(3yk/2n)* and

using the fact that k! > k*/e*

2 X /3Mey\*
1=l <3z X (5 )

Choosing M = [n/3ey] it follows from (3) and (4) that

17~ Pal <17 = Pul 40Py <2

and the proof is complete.

Remarks. (1) 1If A;<2j for all j we can choose =2 — 2/log a thus
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obtammg a minimum value of y<elog(l/a) if a < l/e. In particular,
I,[1/n* 1] < (4 log n)/n. The latter inequality has implications for the
degree of rational approximation on [0, 1]. See [3].

(2) Theorem | can also be used to show the existence of a finite
sequence A,(n), A,(n)..,4,(n) for which 1,[0,1]>4 >0 (where A is
independent of n) while I,[a, 1] >0 as n— oo. For, setting A, =logn, 4, =
2 log n,..., A, = n'log n, it follows that

-2
IA[O, 1] >A1exp (@

see |1], while (taking § = log n)

1 (1/2)logn
I,Ja, 1] <4 (—) /nzA/anoz\/E
a

which approaches 0 as n— oo as long as a > 1/e’.

(3) The inclusion of the constant 1 in the sequence A simplified the
proof of Theorem 1 but is actually unnecessary as long as we assume some
upper bound for ¢, = f(a). For then, as we shall see below, the constant 1
can be reapproximated by a linear combination of {xV }i=1. P.Erdos
suggested moreover that it might be interesting to estimate the degree of
approximation possible by A-polynomials on [a, 1] to x* for any fixed k > 0.
On [0, 1] the distance d, ,,(x; A) in many cases yields the lower bound for
1,10,1]. See [1,p.454] and |2, p.224|. The situation on |a, 1] is quite
different. In fact, for any a >0 and k>0, d(x*;A) actually decreases
exponentially with z:

THEOREM 2. Assurie A;<fj, j=1,2,..,n, for some § > 0. Then
d(x*; A) < C, /n(1 — a?y",

Proof. As in the previous proof, we begin with the inequality

d(xks 4) < (a) I

A—k
A;j+k+2N |

Note then that if ;> &,
Ai—k A;

J

<
Aj+k+2N| " A4+2N
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while if 4; < &,

Ai+k+2N| T k+2N

In either case, however, since x/(x + 2N) is an increasing function of x > 0,

b=k | B
A+k+2N | Bi+2N

except for finitely many j and thus

dxts 4) < C, (i)N M2
a/ ;i B+2N
We set N = flan/2 so that
. Ban/2 n J

Since

1."] J _Tn+1)I(an+1)
joiJ tan In+oan+1)

3

we can apply Stirling’s Formula to conclude (with perhaps a new
constant C,)

dos <V | (=) ]
TS Tk l+a) 1+4+a]’
where = (1/a)””?. Thus choosing a so that a/(1 4+ a)=a??, we obtain
Theorem 2.

ExampLE 1. Ifa =1, 4, < 2j then d(x*; A1) < C, \/n/2"

ExampLE 2. If k=0, f=1, Theorem 2 assures that the constant 1 can
be approximated on [a, 1] by a polynomial P,(x) (with P,(0) = 0) to within
ev/n(l —/a)". If we take the special case Ai=J, j=1,2,.,n the exact
distance can be determined by noting that

1= S o = . (254 50 [ (250)

inf
(b}

£
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where T, represents the nth degree Tchebychev polynomial on |—1, 1], i.e.,
when 1 — 37, b,x is a normalized translate of T,(x). Thus in this case

d(1;A)=1/T,, (Zil)){ 1—a ]n>(1—\/5),..

I 2(1 +a) 2
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